Part Number Hot Search : 
TA123 71M6533 TK61023 A1251 6125TD2A F6410 DB102 TA7300
Product Description
Full Text Search
 

To Download UPA1722 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
MOS FIELD EFFECT TRANSISTOR
PA1722
SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE
PACKAGE DRAWING (Unit : mm)
8 5 1,2,3 ; Source ; Gate 4 5,6,7,8 ; Drain
DESCRIPTION
The PA1722 is N-Channel MOS Field Effect Transistor designed for DC/DC converters and power management applications of notebook computers.
FEATURES
* Low on-resistance
1.8 MAX.
* Small and surface mount package (Power SOP8)
0.05 MIN.
* Built-in G-S protection diode
0.15
* Low Ciss: Ciss = 980 pF TYP.
+0.10 -0.05
* * *
RDS(on)1 = 21.0 m MAX. (VGS = 10 V, ID = 4.5 A)
1.44
1 5.37 MAX.
4
6.0 0.3 4.4 0.8
RDS(on)2 = 29.0 m MAX. (VGS = 4.5 V, ID = 4.5 A) RDS(on)3 = 32.0 m MAX. (VGS = 4.0 V, ID = 4.5 A)
0.5 0.2 0.10
1.27 0.78 MAX. 0.40
+0.10 -0.05
0.12 M
* ORDERING INFORMATION
PART NUMBER PACKAGE Power SOP8
PA1722G
ABSOLUTE MAXIMUM RATINGS (TA = 25C, All terminals are connected.)
Drain to Source Voltage (VGS = 0 V) Gate to Source Voltage (VDS = 0 V) Drain Current (DC) Drain Current (pulse)
Note1 Note2
VDSS VGSS ID(DC) ID(pulse) PT Tch Tstg
30 20 9 36 2.0 150 -55 to +150
V V A A W C C
EQUIVALENT CIRCUIT
Drain
Total Power Dissipation (TA = 25C) Channel Temperature Storage Temperature
Gate
Body Diode
Notes 1. PW 10 s, Duty Cycle 1 % 2. Mounted on ceramic substrate of 1200 mm x 2.2 mm Remark
2
Gate Protection Diode
Source
The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
Document No. G13890EJ1V0DS00 (1st edition) Date Published November 1999 NS CP(K) Printed in Japan
The mark * shows major revised points.
(c)
1998, 1999
PA1722
ELECTRICAL CHARACTERISTICS (TA = 25 C, All terminals are connected.)
CHARACTERISTICS SYMBOL RDS(on)1 RDS(on)2 RDS(on)3 Gate to Source Cut-off Voltage VGS(off) | yfs | IDSS IGSS Ciss Coss Crss td(on) tr td(off) tf QG QGS QGD VF(S-D) trr Qrr TEST CONDITIONS VGS = 10 V, ID = 4.5 A VGS = 4.5 V, ID = 4.5 A VGS = 4.0 V, ID = 4.5 A VDS = 10 V, ID = 1 mA VDS = 10 V, ID = 4.5 A VDS = 30 V, VGS = 0 V VGS = 20 V, VDS = 0 V VDS = 10 V VGS = 0 V f = 1 MHz ID = 4.5 A VGS(on) = 10 V VDD = 15 V RG = 10 ID = 9 A VDD = 24 V VGS = 10 V IF = 9 A, VGS = 0 V IF = 9 A, VGS = 0 V di/dt = 100 A/ s 980 320 125 20 80 60 30 20 2.3 6.0 0.84 35 45 1.5 5.0 MIN. TYP. 14.0 19.0 22.0 2.0 9.2 10 10 MAX. 21.0 29.0 32.0 2.5 UNIT m m m V S
*
Drain to Source On-state Resistance
*
Forward Transfer Admittance Drain Leakage Current Gate to Source Leakage Current Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain Charge
A A
pF pF pF ns ns ns ns nC nC nC V ns nC
*
Body Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
TEST CIRCUIT 1 SWITCHING TIME
TEST CIRCUIT 2 GATE CHARGE
D.U.T.
D.U.T. RL PG. RG RG = 10 VDD
ID 90 % 90 % ID 0 10 % td(on) ton tr td(off) toff 10 % tf VGS
IG = 2 mA
VGS(on) 90 %
VGS
Wave Form
RL VDD
0
10 %
PG.
50
VGS 0 = 1 s Duty Cycle 1 %
ID
Wave Form
2
Data Sheet G13890EJ1V0DS00
PA1722
*
TYPICAL CHARACTERISTICS (TA = 25 C)
DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA 2.8
TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE
dT - Percentage of Rated Power - %
PT - Total Power Dissipation - W
100 80 60 40 20
2.4 2.0 1.6 1.2 0.8 0.4 0 20 40 60 80
Mounted on ceramic substrate of 1200 mm 2 x 2.2 mm
0
20
40
60
80
100 120 140 160
100 120 140 160
TA - Ambient Temperature - C
TA - Ambient Temperature - C
FORWARD BIAS SAFE OPERATING AREA 100
ID(pulse)
Remark Mounted on ceramicsubstrate of 1200 mm x 2.2 mm
2
s
10 0
ID - Drain Current - A
RDS(on) Limited (VGS=10V)
1m
10
ID(DC)
s
10 m s
10
Po we rD iss ip
0m s
at io
1 TA = 25 C Single Pulse 0.2 0.02 0.1
n Li m ite d
1
10
100
VDS - Drain to Source Voltage - V
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH 1 000
rth(t) - Transient Thermal Resistance - C/W
100
Rth(ch-A) = 62.5C/W
10
1
0.1
0.01 100
Mounted on ceramic substrate of 1200 mm2 x 2.2 mm Single Pulse TA = 25C
1m
10 m
100 m
1
10
100
1000
PW - Pulse Width - s
Data Sheet G13890EJ1V0DS00
3
PA1722
FORWARD TRANSFER CHARACTERISTICS 100 Pulsed 36 32
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE VGS = 10 V 4.5 V Pulsed 4.0 V
ID - Drain Current - A
10
ID - Drain Current - A
VDS = 10 V 6 8
28 24 20 16 12 8 4
1
TA = 150C 75C 25C
-25C
0.1
0
2
4
0
0.4
0.8
1.2
1.6
2.0
VGS - Gate to Source Voltage - V
VDS - Drain to Source Voltage - V
|yfs| - Forward Transfer Admittance - S
100
RDS(on) - Drain to Source On-state Resistance - m
FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT
DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE 100 90 80 70 60 50 40 30 20 10 0 5 10 15 ID = 9 A 4.5A Pulsed
10
TA = -25C 25C 75C 150C
1
0.1 0.01
VDS =10 V Pulsed 0.1 1 10 100
VGS - Gate to Source Voltage - V
ID- Drain Current - A
RDS(on) - Drain to Source On-state Resistance - m
VGS(off) - Gate to Source Cut-off Voltage - V
DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT 80 Pulsed 60 VGS = 4.0 V 40 4.5 V 10 V
GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE 5 VDS = 10 V ID = 1 mA
4 3
2 1
20
0 0.1
1
10
100
0 -50
0
50
100
150
200
ID - Drain Current - A
Tch - Channel Temperature - C
4
Data Sheet G13890EJ1V0DS00
PA1722
RDS(on) - Drain to Source On-state Resistance - m
DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 50 40 30 20 VGS = 4.0 V 4.5 V 10 V 100 ID = 4.5 A
SOURCE TO DRAIN DIODE FORWARD VOLTAGE
IF - Diode Forward Current - A
10 VGS = 10 V 0V
1
10 0 -50
0
50
100
150
0.1 0
Pulsed 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Tch - Channel Temperature - C
VSD - Source to Drain Voltage - V
CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 10000
REVERSE RECOVERY TIME vs. DRAIN CURRENT 1000
trr - Reverse Recovery Diode - ns
Ciss, Coss, Crss - Capacitance - pF
VGS = 0 V f = 1 MHz
di/dt = 100A /s VGS = 0 V
1000
Ciss
100
Coss 100 Crss
10
10 0.01
0.1
1
10
100
1 0.1
1
10
100
VDS - Drain to Source Voltage - V
ID - Drain Current - A
VDS - Drain to Source Voltage - V
14 VGS 30 VDD = 24 V 15 V 6V 12 10 8 6 10 ID = 9 A 12 16 20 24 28 0 32 4 2 0 VGS 0 4 8 QG - Gate Charge - nC
20
VGS - Gate to Source Voltage - V
DYNAMIC INPUT/OUTPUT CHARACTERISTICS 40
Data Sheet G13890EJ1V0DS00
5
PA1722
[MEMO]
6
Data Sheet G13890EJ1V0DS00
PA1722
[MEMO]
Data Sheet G13890EJ1V0DS00
7
PA1722
* The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. * No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. * NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. * Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. * While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. * NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
M7 98. 8


▲Up To Search▲   

 
Price & Availability of UPA1722

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X